
Designing and prototyping a
Biologically Inspired Swarm

Intelligence Systems

Antonio Luca Alfeo – July 2019

Biologically Inspired Swarm Intelligence.

• Swarm intelligence (SI) is the collective behavior of decentralized, self-
organized systems, natural or artificial. The concept is employed in work
on artificial intelligence. The expression was introduced by Gerardo Beni
and Jing Wang in 1989, in the context of cellular robotic systems.

• SI systems consist typically of a population of simple agents interacting
locally with one another and with their environment. The inspiration often
comes from nature, especially biological systems.

• The agents follow very simple rules, and although there is no centralized
control structure dictating how individual agents should behave, local, and
to a certain degree random, interactions between such agents lead to the
emergence of "intelligent" global behavior, unknown to the individual
agents.

• The application of swarm principles to robots is called “swarm robotics”,
while “swarm intelligence” refers to the more general set of algorithms,
covering from optimization to forecasting problems.

Example of Application

https://www.youtube.com/watch?v=
UtBa9yVZBJM

https://www.youtube.com/watch?v=UtBa9yVZBJM
https://www.youtube.com/watch?v=UtBa9yVZBJM

Benefits

• Robust: Because collective systems are built upon multitudes in parallel,
there is redundancy. Individuals don't count. Small failures are lost in the
hubbub. Big failures are held in check by becoming merely small failures at
the next highest level on a hierarchy.

• Self-organized: Plain old linear systems can be dramatically affected by
feedback loops. But in swarm systems, feedback can results in increasing
order. By incrementally extending new structure beyond the bounds of its
initial state, a swarm can build its own scaffolding to build further
structure. Spontaneous order helps create more order.

• Adaptable: It is possible to build a clockwork system that can adjust to
predetermined stimuli. But constructing a system that can adjust to new
stimuli, or to change beyond a narrow range, requires a swarm. Finally,
adaptation over individuals and time leads results in evolution.

Drawbacks

• Non-optimal: Because they are redundant and have no central control, swarm
systems are inefficient. Emergent controls such as prices in free-market economy
tend to dampen inefficiency, and never eliminate such inefficiency as a linear
system can.

• Non-controllable: There is no authority in charge. Guiding a swarm system can
only be done as a shepherd would drive a herd: by applying force at crucial
leverage points, and by subverting the natural tendencies of the system to new
ends. An economy can't be controlled from the outside; it can only be slightly
tweaked from within.

• Non-predictable: A causes B, B causes C. This logic does not apply to swarm
systems. Swarm systems are oceans of intersecting logic: A indirectly causes
everything else and everything else indirectly causes A. It is called horizontal
causality. The credit for the true cause (or more precisely the true proportional mix
of causes) will spread horizontally through the web until the trigger of a particular
event is essentially unknowable.

Simulation-based Design

• The study of real world implementations of swarm systems,
are limited by a lack of well-established design
methodologies that provide performance guarantees.

• Engineering such systems is a challenging task because of
the difficulties to obtain the micro-macro link: a
correspondence between the microscopic description of
the individual agent behaviour and the macroscopic models
that describe the system’s dynamics at the global level.

• As such most of such system are designed by simulation.

Platforms

Platform by Agent-based models on OpenAbm, now CoMSES.net, between 2008 and 2018. NetLogo is clearly dominant [Gunaratne, C., &
Garibay, I. (2018). NL4Py: Agent-Based Modeling in Python with Parallelizable NetLogo Workspaces. CoRR, abs/1808.03292].

Netlogo

• NetLogo is a programmable modeling environment for
simulating natural and social phenomena.

• NetLogo was written in 1999 by Uri Wilensky, based on the
programming language Logo (Seymour Papert, MIT), which
is a simplified dialect of LISP, and it was designed for
modelling complex systems developing over time:
– You can give instructions to hundreds or thousands of agents all

operating independently;
– Observe the emergence of global behaviors;
– Connect micro-level behaviors of individuals and macro-level

patterns emerging from interactions.

• It runs on the Java Virtual Machine, so it works on all major
platforms.

Netlogo Features

• Extensive documentation and tutorials
http://ccl.northwestern.edu/netlogo/docs/dictionary.html;

• Models Library, a large collection of pre-written
simulations covering topics in:
– Biology and medicine;
– Physics and chemistry;
– Mathematics and computer science;
– Economics and social psychology.

• Free and open source;
• Fully programmable;
• Double precision floating point math;

https://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/docs/dictionary.html

Netlogo Resources

• Download:
http://ccl.northwestern.edu/netlogo/download.s
html

• Web:
http://www.netlogoweb.org/launch#http://www.
netlogoweb.org/assets/modelslib/Sample%20Mo
dels/Social%20Science/Traffic%20Basic.nlogo

• Documentation:
http://ccl.northwestern.edu/netlogo/docs/

http://ccl.northwestern.edu/netlogo/download.shtml
http://ccl.northwestern.edu/netlogo/download.shtml
http://ccl.northwestern.edu/netlogo/download.shtml
http://ccl.northwestern.edu/netlogo/download.shtml
http://www.netlogoweb.org/launchhttp://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Traffic%20Basic.nlogo
http://www.netlogoweb.org/launchhttp://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Traffic%20Basic.nlogo
http://www.netlogoweb.org/launchhttp://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Traffic%20Basic.nlogo
http://www.netlogoweb.org/launchhttp://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Traffic%20Basic.nlogo
http://ccl.northwestern.edu/netlogo/docs/
http://ccl.northwestern.edu/netlogo/docs/
http://ccl.northwestern.edu/netlogo/docs/

Simulations in Netlogo

(0, 0)

(0, 1)

tick 0 tick 2 tick 3 tick 1

• NetLogo simulations are essentially discrete: the
world (the space) is discrete, i.e. is a grid whose basic
regions are called patches and identified by their
Cartesian coordinates.

• Time too is discrete, i.e. measured in ticks (retrivable
with the primitive ticks): each tick the agents
(turtles and links), the patches and the world can
perform command or procedures.

First Netlogo Model Run
File > Model Library > Biology > Rabbits Grass Weeds > Wolf sheep Predation

Version

Buttons

Other Parameters

Monitors

Plot

Studying The Model’s Behavior

How does the model work?

What would happen to the sheep population if
there was more initial sheep and less initial wolves
at the beginning of the simulation?

• Switch to the "sheep-wolves-grass" model.

• Set the "initial-number-sheep" slider to 150.

• Set the "initial-number-wolves" slider to 25.

• Press "setup" and then "go".

• Can you kill all the wolves?

Playing God (from the scratch)

Setting up a model

• When you open NetLogo the world is empty (no
turtle): you have to create turtles, determine
their behavior and the characterize the
environment they live in;

• There is a special agent, called the Observer that
take care of this kind of actions.

• The observer can give commands.
• The turtles work with procedures and variables.
• Those can be encoded in the code tab (remember

NetLogo is case insensitive) and linked to GUI
elements.

Day 1: God created the day and the
night

Basic Program Structure

• Every NetLogo program should contain at least
the following parts:
– Setup part: this part consists of a single procedure
setup that initializes global variables, create agents
and does other setup operations;

– Go part: this part consists of the main procedure go
that implements one cycle of the simulation.

Those should be linked to the buttons in the GUI in
order to setup each new model run and initiate each
running.

Clearing world

• Procedures such as clear-all, clear-turtles,
clear-patches, clear-output are typically
called at the beginning of a program.

• Clear-all resets all global variables to zero; also
clears out turtles, patches, and output. Other
commands clear subsets of the model.

to setup

clear-all ;; clears entire world, usually called at beginning

end

Day 2: God created the sky

Variables, the volatile part of the model

• The initial part of the program should contain the declaration of global and
agent variables (in this order).

• Logo is a dynamically-typed language

• We have the following basic types and operators:
– Booleans: true or false;

– Lists: ordered, immutable collections of objects;
– Strings: immutable sequences of characters; create with double quotes.
– Numbers: floating point numbers;

– Numerical operators: +, -, /, ˆ;
– Relational operators: >, >=, =, !=, <, <=;
– Logical operators: and, or, xor, not.

REMARK: Since all numbers in Netlogo are floating points, we are going to work with
approximations! The value of 0.1 + 0.2 is 0.30000000000000004, so the value of 0.1 + 0.2 = 0.3 is
false, and the value of 0.1 + 0.2 > 0.3 is true.

Setting Variables

There are 3 main procedures to output the value of a variable on the
console. The print command prints some value to the console, followed by a
carriage return. The type command also prints a value to the console, but
does not include a carriage return. The show command also prints a value
(followed by a carriage return), but includes the identifying features of the
calling agent.

There are 2 procedures aimed at setting variable’s value, let and set. The
let command creates a new local value with a given value. If you want to
later change the value of any variable, you use the set command. Example:

let finished? true

type finished? ;; report value of finished? to output screen

set finished? false

Variables’ Types

• We can divide variables in:

– Global variables: they have only one value. Every agent
can access it;

– Agent variables (e.g. turtle variables): each agent has its
own value for each agent variable. There are both built-in
and user-defined agent variables.

– Local variables: variables that are defined and used only in
the context of a particular procedure or part of a
procedure.

Global Variables

• Global variables can be read and set by any agent at any time
(by default global variables are set to zero). Global variables are
declared with the keyword globals:

globals [<variableNames>]

• Example

globals [score counter] ;; declare the global
variables score and counter

• To set a global variable we use the keyword set:

set <variableName> <value>

Agent’s Variables

• Agent variables can be both built-in and user-defined; Built-in

turtle variables are color, xcor, heading etc. To define a new agent

variable we use the constructor:

<agentType>-own [<variableName>]

• Where agent types own are turtles-own, patches-own, links-
own.

turtles-own [energy] ;; each turtle has its own
energy

Agent’s variables

• Each agent has direct access to its own variables, both for reading and
setting. Other agents can read and set a different agent’s variables using ask:

ask turtle 0 [show color] ;; print turtle’s 0 color

ask turtle 0 [set color blue] ;; turtle 0 becomes blue

• An agent can also read a different agent’s variables using of

show [color] of turtle 0 ;; print turtle’s 0 color

Agentsets

• So far we have asked either to single agents to do something (ask
turtle 0 [doSomething]) or to all agents to do something
(ask turtles [doSomething]);

• We can also ask to specific sets of agents to execute actions. This is
done via the so-called agentsets;

• An agentset is nothing but a set of agents. An agentset can contain
either turtles, patches or links, but not more than one type at
once;

• An agentset is not in any particular order. In fact, it’s always in a
random order. And every time you use it, the agentset is in a
different random order.

Agentsets

It’s possible to construct agentsets that contain only some agents (e.g. all the
red turtles).,e.g. according to a particular attribute:

ask one-of turtles [set color green] ;; make a randomly chosen

turtle turn green

patches with [pxcor < 3] ;; create the agentset of patches with x

coordinate smaller than 3

to changeColor

let green-turtles turtles with [color = green] ;; create the

agenset of green turtles

ask green-turtles [set color red] ;; make green turtles red

Local Variables

• A local variable is defined and used only in the context of a particular
procedure or part of procedure. To create local variables we use the
keyword let;

let <variableName> <value>

• Example

to-report sumOfThree [num1 num2 num3] ;; report num1+num2+num3
 let numTemp num1 + num2 ;; store num1 + num2
 report numTemp + num3 ;;report the sum

end

Day 3: God created the earth

Patches related properties

• Patches are identified by their variables pxcor and pycor. Other
variables are:

• pcolor: the color of the patch.
• plabel : It may hold a value of any type.
• plabel-color : It holds a number greater than or equal to 0 and

less than 140. This number determines what color the patch's label
appears in (if it has a label).

• Moreover, there are also commands to pull up specific (or random)
coordinates. The commands “max-pxcor” and “max-pycor” return
the maximum x and y coordinates, respectively. The commands
“random-pxcor” and “random-pycor” return random x,y
coordinates.

One other patches’ primitive

• Diffuse: when studying the spread of some process or

resource, it may be useful to use the “diffuse” command.
This tells each patch to give equal shares of (number * 100)
percent of the value of patch-variable to its eight
neighboring patches. Its argument should be between 0
and 1. Note that this is an observer command. Example:

diffuse pcolor 0.5 ;; each patch diffuses 50% of
its variable color to its neighboring 8 patches.
Thus, each patch gets 1/8 of 50% of the color from
each neighboring patch.

Day 4: God creates all the stars and
celestial objects

Conditionals

• We can use booleans for conditional code execution.

if (<boolCondition>) [<commands>] ;; note parentheses

ifelse (<boolCondition>)
[<commands-for-true>]
[<commands-for-false>]
ifelse-value (<boolCondition>) ;; allows condition determination of
value
[<reporter-for-true>]
[<reporter-for-false>]

• Example:

if (random-float 1 < 0.5) [show "heads"] ;; random float num return a
floating number between 0 and num

• Example:

ask turtles [
set color ifelse-value (wealth < 0) [red] [blue]
]

Loops

NetLogo offers several looping constructs:

loop [<commands>]

The list of commands <commands> is repeatedly executed (potentially forever). We can use
stop to exit a loop: if one of the commands eventually calls stop, you will exit the loop.
Example:

loop [ifelse (counter > 100) [stop]
[set counter counter + 1]
]

foreach [item in list] [<commands>]

Example:

let my-turtle-list (list (turtle 1) (turtle 2) (turtle 3))
foreach my-turtle-list [ask ? [fd 2]] ;; ask each turtle in list to
move forward 2 steps

Loops

• We can also use repeat and while for bounded iteration:

repeat <num> [<commands>]

• The sequence of commands <commands> is executed exactly <num> times.

while [<condition>] [<commands>]

• The sequence of commands <commands> is executed exactly <num> times. Example:

while [ticks < 100] ;; while tick count is less than 100
[go] ;; run command “go”
• Remark
REMARKS: For most of the tasks we will encounter loops are not needed. In NetLogo, we usually
program a single cycle/step of the simulation (via the procedure go), and then use a forever button in
order to repeat that cycle forever. We can click again on the forever button to exit the loop.

Instruction

• Instructions tell agents what to do. We can
divide instructions according to three criteria:
– Whether they are built into NetLogo (primitives) or

whether they are implemented by the user
(procedure);

– Whether the instruction produces an output
(reporters) or not (commands);

– Whether the instruction takes inputs or not.

Commands

• Commands are procedures that do not output and may take inputs:

to <commandName> [<formalParameters>]
<commands>
end

• Examples:

to go

clear-all ;; reset the world

create-turtles 100 ;; create 100 turtles
ask turtles [forward 1] ;; all turtles move fd of 1
end

 to createNumTurtles [num]

 create-turtles num

 end

Reporters

• Reporters are procedures that compute a result and report it:

to-report <reporterName>

<body>
report <reportValue> end

• Example:

to-report double [num]
report 2 * num ;; note that there is no parentheses
end

More utilities...

• There is a number of more general purpose
functions (e.g. ceiling, floor, int, min,
max, mean, standard-deviation, round,
random).

• Check the Netlogo documentation
http://ccl.northwestern.edu/netlogo/docs/dictio
nary.html.

http://ccl.northwestern.edu/netlogo/docs/dictionary.html
http://ccl.northwestern.edu/netlogo/docs/dictionary.html

Day 5 and 6: God created all the living
beings

Creating/Killing agents

There are 2 main agents type: turtle (the moving one) and links (used with
graph and network modeling). In this course we will focus on the turtles. All
the following primitives create new turtles, though from different contexts.

• create command all called by the observer. Note that you can
immediately assign turtle characteristics and issue commands. This is an
alternative to the keyword turtles-own [var1 ...] or <breeds>-own
[var1 ...] that can only be used at the beginning of a program, before
any function definitions. It defines the variables belonging to each
individual turtle or breed.

• hatch command is called by the turtles. Turtles “hatched” have features
identical to their predecessor.

• sprout command is called by patches.

• breeds creates a specific breed.

• die removes one or more agents.

Creating/Killing agents

• Examples:

ask n-of 10 patches [sprout 1] ;; ask 10 random patches to sprout 1
turtle

ask turtle 0 [hatch 1] ;; ask turtle 0 to “hatch” a new turtle

create-turtles 10 ;; creates 10 turtles

breed [wolverines wolverine] ;; define a breed called “wolverines”

create-wolverines ;; creates 1 turtles of breed wolverine

create-wolverines 50 [set color blue] ;; creates 50 blue-colored
wolverines

ask turtle 4 [die]

Ask command

The observer can gives commands to turtles (and patches).

create-turtles 1 ;; creates one turtle (who is turtle 0) in the
centre of the world
inspect turtle whoID ;; shows properties of turtle whoID

The ask command specifies command to be run by turtles or patches:

ask somebody [setOfComands]

ask turtle whoID [set color red] ;; set the color of turtle
whoID to red;

ask turtles [set color red] ;; set the color of all turtles to
red;

ask patch 2 3 [set pcolor green] ;; set the color of the patch
with center (2, 3) to green (note that we used pcolor)

In an ask command, the actions to be executed must be consistent with the agent
we are asking to execute those very actions.

ask turtle whoID [set color green];; this makes sense
ask turtle whoID [create-turtles 1];; this doesn’t make sense

Turtle Properties

The world is inhabited by agents called turtles, i.e. movable
entities within the world, having a:

• Unique ID: resulting by the «who» procedure

• Size: size of a turtle w.r.t. the patch size (1 by default).

• Hidden? : boolean properties that makes invisible a given
turtle

• Position: grid coordinates (xcor,ycor)

• Heading: degrees (0 north, 90 est,...)

• Shape: an arrow by default

• Color

Moving

We can move turtles forward and backwards with the commands forward
<distance> and back <distance>:

ask turtle 0 [forward 2]

Turning

Turtles can turn left and right: left <degree>, right <degree>:

ask turtle 0 [right 90]

More movement procedures…

Back n, moves backward by n steps.

Setxy x y, sets its x-coordinate to x and its y-coordinate to y.

move-to agent, sets its x and y coordinates to be the same as
the given agent's

towards, reports the heading from this agent to the given
agent

towardsxy, reports the heading from the turtle or patch
towards the point (x,y)

Checking to the environment
myself, "self" and "myself" are very different. "self" is simple; it means "me".
"myself" means "the turtle, patch or link who asked me to do what I'm doing
right now.“

nobody, This is a special value which some primitives such as turtle, one-of,
max-one-of, etc. report to indicate that no agent was found. Also, when a
turtle dies, it becomes equal to nobody.

turtles-at dx dy, Reports an agentset containing the turtles on the patch
(dx, dy) from the caller.

turtles-on agent, reports an agentset containing all the turtles that are on
the given patch or patches, or standing on the same patch as the given turtle
or turtles.

turtles-here, reports an agentset containing all the turtles on the caller's
patch (including the caller itself if it's a turtle).

Checking to the environment

Neighbors: Reports an agentset containing the 8 surrounding patches (neighbors) or 4
surrounding patches (neighbors4). Example:

show sum [count turtles-here] of neighbors ;; prints the total number of
turtles around this turtle or patch

In-cone: in-cone reports an agentset that includes only those agents from the original agentset
that fall in the cone The cone is defined by the two inputs, the vision distance (radius) and the
viewing angle. The viewing angle may range from 0 to 360 and is centered around the turtle's
current heading. Example:

ask patches in-cone 3 60 [set pcolor red]

agentset in-radius number: Reports an agentset that includes only those agents from the
original agentset whose distance from the caller is less than or equal to number. Example:

ask patches in-radius 3 [set pcolor red]

[reporter] of agent: For an agent, reports the value of the reporter for that agent (turtle or
patch). Example:

show [pxcor] of patch 3 5

Checking to the environment

[reporter] of agentset: For an agentset, reports a list that contains the value of the reporter for
each agent in the agentset (in random order). Example:

crt 4
show sort [who * who] of turtles ;; [0 1 4 9]

one-of agentset : From an agentset, reports a random agent. Example:

ask one-of patches [set pcolor green] ;; a random patch turns green

Count agentset : Reports the number of agents in the given agentset. Example:

show count patches with [pcolor = red] ;; prints the total number of red patches

agentset with [reporter]: Takes two inputs: on the left, an agentset (usually "turtles" or
"patches"). On the right, a boolean reporter. Reports a new agentset containing only those agents that
reported true -- in other words, the agents satisfying the given condition. It can be applyied also as
with-max and with-min. Example:

show count patches with [pcolor = red] ;; prints the number of red patches
show count patches with-min [pycor] ;; prints the number of patches on the bottom
edge

Checking the environment

any? Agentset reports true if the given agentset is non-empty, false otherwise. Equivalent to
"count agentset > 0", but more efficient (and arguably more readable). Example:

if any? turtles with [color = red] [show "at least one turtle is red!"]

all? agentset [reporter] reports true if all of the agents in the agentset report true for the
given reporter. Otherwise reports false as soon as a counterexample is found. Example:

if all? turtles [color = red] [show "every turtle is red!"]

n-of size agentset, from an agentset, reports an agentset of size size randomly chosen from
the input set, with no repeats. Example:

ask n-of 50 patches [set pcolor green] ;; 50 randomly chosen patches turn
green

max-n-of, reports a random agent in the agentset that reports the greater value for the given
reporter. Example:

show max-one-of turtles [xcor + ycor] ;; reports the first turtle with the
greater sum of coordinates

Day 7: God did rest.

Since you all, as Ph.D. students, are way
less divine living being, you may need

some «Being-God practice» ...

Exercize

• Modify the «Flocking» model by letting the
boids change their colors according to their
current mode: alignment (blue), separation
(red) or cohere (green).

Any question?

Designing and prototyping a
Biologically Inspired Swarm

Intelligence System

PART 2

Local and Global Swarm Features

The behavior of swarm intelligent systems if often said to be
an “emergent behavior”
• It does not arise from a rationale choice
• It does not arise from an engineering finalized analysis
• No one and nothing in the system states: I will do that

because this will lead to a specific behavior of the system
So, intelligence seems to magically “emerge”. Clearly,
emergence is in the eye of the observer:
• The individual in the system have no global perspective
• They are not aware of what’s globally happening
• They are not aware they are doing something intelligent

Local and Global Swarm Features

The “intelligence” is observed in terms of some high level
global scale organized behavior:
• Spontaneously emerged in the system
• Spanning outside the typical local capability of

sensing/effecting of individuals
From Local to Global:
• Typically, in swarm systems, interactions and capability

are local
• Nevertheless, the behavior observed has some sorts of

global organization
To evaluate the quality of a swarm system we need to
build some sort of local and global observers.

Monitors And Plotting

• NetLogo has two main ways of displaying
performances and data to the user:
– Plots: show the values of a few variables from the

whole model’s run

– Monitors: show the value of one variable the model

runs.

Monitors

Plots

Plotting

Of course it is possible to code your plot in the code tab by using primitives
such as: set-current-plot, set-current-plot-pen, plot,
histogram, plotxy. Example:

to do-plotting
set-current-plot "populations" ;;name of the plot
set-current-plot-pen "sheep" ;; name of the variable
plot count sheep
set-current-plot-pen "wolves"
plot count wolves
set-current-plot "next plot"
end

Check the documentation for more details.

Testing the behavior with a coverage
problem

At the beginning of the model “Flocking Vee
Formation” add:

globals [

visited-count

visited-perc

hits

]

patches-own [

visited?

]

Testing the behavior with a coverage
problem

• Add to setup:
ask patches [set visited? false]

• Replace to go:
to go
 ask turtles [
 ask patches in-radius ((vision-distance / 2) - too-close) [set visited? true]
 ask patches in-radius ((vision-distance / 2) - too-close) [set pcolor blue]
 set speed base-speed
 set visible-neighbors (other turtles in-cone vision-distance vision-cone)
 ifelse any? visible-neighbors
 [adjust]
 [set happy? true]
 recolor
 fd speed ; fly forward!
 if any? turtles in-radius too-close [set hits hits + 1]
]
 set visited-count count patches with [visited? = true]
 set visited-perc visited-count / ((max-pycor - min-pycor)*(max-pxcor - min-pxcor))
 if visited-perc > 0.99 [stop]
 tick
end

Exploration of the Parameters’ Space

Dramatically change (one by one):

• Max-turn

• Too-close

• Speed-change-factor

• Updraft-distance

What did you notice?

The Behavior space

• BehaviorSpace is a software tool integrated with
NetLogo that allows you to systematically
perform experiments with models.

• BehaviorSpace runs a model many times, varying
the model’s settings and recording the results of
each model run. This process is sometimes called
“parameter sweeping”. It lets you explore the
model’s “space” of possible behaviors and
determine which combinations of settings cause
the behaviors of interest.

Using the Behavior space

• To begin using BehaviorSpace,
open your model, then choose
the BehaviorSpace item on
NetLogo’s Tools menu.

• The dialog that opens lets you
create, edit, duplicate, delete,
and run experiment setups.
Experiments are listed by name
and how by model runs the
experiment will consist of.

• Experiment setups are
considered part of a NetLogo
model and are saved as part of
the model.

Setting up the Behavior Space

• To create a new experiment setup, press the “New” button
• Experiment name: If you have multiple experiments, giving them

different names will help you keep them straight.
• Vary variables as follows: This is where you specify which settings

you want varied, and what values you want them to take. Variables
can include sliders, switches, choosers, and any global variables in
your model.

• You may specify values either by listing the values you want used,
or by specifying that you want to try every value within a given
range. For example, to give a slider named number every value
from 100 to 1000 in increments of 50, you would enter:

• ["number" [100 50 1000]]
• Or, to give it only the values of 100, 200, 400, and 800, you would

enter:

• ["number" 100 200 400 800]

1

2
3

Setting up the Behavior Space

• Measure runs at every step: Normally NetLogo will measure model runs
at every step, using the reporters you entered in the previous box. If
you’re doing very long model runs, you might not want all that data.
Uncheck this box if you only want to measure each run after it ends.

• Setup commands: These commands will be used to begin each model run.
Typically, you will enter the name of a procedure that sets up the model,
typically setup. But it is also possible to include other commands as well.

• Go commands: These commands will be run over and over again to
advance to the model to the next “step”. Typically, this will be the name of
a procedure, such as go, but you may include any commands you like.

• Stop condition: This lets you do model runs of varying length, ending each
run when a certain condition becomes true. For example, suppose you
wanted each run to last until there were no more turtles. Then you would
enter:

not any? turtles

4

5

6

7

8

9

Running/saving options

• The run options dialog lets you select the formats you would like the data from your experiment
saved in. Data is collected for each run or step, according to the setting of Measure runs at every
step option. In either case, the initial state of the system is recorded, after the setup commands run
but before the go commands run for the first time.

• Table format lists each interval in a row, with each metric in a separate column. Table data is
written to the output file as each run completes. Table format is suitable for automated processing
of the data, such as importing into a database or a statistics package.

• Spreadsheet format calculates the min, mean, max, and final values for each metric, and then lists
each interval in a row, with each metric in a separate column. Spreadsheet data is more human-
readable than Table data, especially if imported into a spreadsheet application.

• After selecting your output formats, BehaviorSpace will prompt you for the name of a file to save
the results to. The default name ends in “.csv”. You can change it to any name you want, but don’t
leave off the “.csv” part; that indicates the file is a Comma Separated Values (CSV) file. This is a
plain-text data format that is readable by any text editor as well as by most popular spreadsheet
and database programs.

Observing runs

• After you complete the run options dialog, another dialog will appear, titled
“Running Experiment”. In this dialog, you’ll see a progress report of how many
runs have been completed so far and how much time has passed. If you entered
any reporters for measuring the runs, and if you left the “Measure runs at every
step” box checked, then you’ll see a plot of how they vary over the course of each
run.

• You can also watch the runs in the main NetLogo window (if the “Running
Experiment” dialog is in the way, just move it to a different place on the screen.)
The view and plots will update as the model runs. If you don’t need to see them
update, then use the checkboxes in the “Running Experiment” dialog to turn the
updating off. This will make the experiment go faster.

• If you want to stop your experiment before it’s finished, press the “Abort” button.
Any results generated so far will still be saved.

• When all the runs have finished, the experiment is complete.

Simulations’ results

For example, let’s test the following
parametrizations:

• ["vision-distance" [7 2 15]]

• ["too-close" [0.5 0.5 2.5]]

• Which is the best parametrization to ensure good
local feature (e.g. time in a safe distance)?

• What about the global feature (e.g. time to cover
90% of the environment)?

• Is there any tradeoff?

Analyzing the results

Choosing the variables to test

Qualitative way:
1. Run a few simulations “manually” and select the

parameters which affect the most the swarm behaviour.
2. Test a range of values for those parameters.
Quantitative way:
1. Run multiple simulations systematically, by testing a range

of value for each parameters.
2. Perform a regression by using the rescaled input and

output model’s parameters.
3. Select the parameter with the larger beta coefficients, and

test a range of values for those parameters.

Interpret the results!

https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Feature_scaling

Exercize

Modify the model “Flock Vee Formation” in order to:
• At the setup of the simulation, choose 20 random

patches as (non discovered) targets
• A target is discovered if a boid is on top of it
• Stop the simulation once 19 targets are discovered
• Modify the behavior of the boids in order to minimize

the time to find 19 targets, by using 20 boids
• Design some protection mechanism to reduce as much

as possible the time in which each boid is too-close to
another one.

• Test systematically the parametrizations of the model
you made and interpret the results.

FINAL TEST
Report and present the obtained results. A few guidelines:
The document should report each choice on the modification of the
original Netlogo model, the reasons for this, if these modification are
effective and with which parameters settings. Specifically:
- The motivations: i.e. the reasons for the modification of the

Netlogo model, the performance metrics chosen, and/or the range
of parameters chosen.

- The modifications: or explain in concrete terms what modification
has been carried out and in what way.

- Which results produced this modification of the model: use
tables/images/graphics depicting the results of the exploration
with your model.

- What conclusions can be drawn from these results: for example we
have satisfied the motivations? If yes, why? If not, why? how can
the results be interpreted?

Any question?

BACKUP SLIDES

Lists

Lists are containers of elements in a fixed order. In NetLogo lists are: Immutable,
Ordered, Potentially heterogeneous. We can construct lists with the list
constructor (note parentheses):

(list) ;; emtpy list

(list 0 "one" whatever) ;; list of three items

The usual square brackets notation can be used as well.

files (file-read, file-open, file-write,
file-delete, file-close)

• It is often useful to be able to read and write data from files. Netlogo has a
number of primitives for managing files. An example follows below.

to test-files
set-current-directory user-directory ;; allow user to select directory for files
file-open "location.txt" ;; Opening file for writing
ask turtles
[file-write xcor file-write ycor] ;; ask turtles to write their coordinates
out to file
file-close
file-open "location.txt" ;; Opening file for reading
ask turtles
[setxy file-read file-read] ;; ask turtles to read their coordinates from file
file-close
show file-exists? "location.txt" ;; reports true if file exists
file-delete "location.txt"
show file-exists? "location.txt" ;; should now report false

end

making movies (movie-start, movie-
grab-view, movie-close)

To make a quicktime movie, the bare minimum is that you must name it, tell
Netlogo how many “frames” of the program to grab, and close it at the end.
Note: these Quicktime movies are not compressed, so they can quickly
become huge!

;; export a 10 frame movie of the view
setup
movie-start "abm.mov" ;; setup movie and name it
movie-grab-view ;; show the initial state
repeat 10 ;; repeat what’s in brackets 10 times

 [
 go ;; run the go procedure
 movie-grab-view
]
movie-close

